Spin Orbit Coupling

is at the heart of functional material properties such as Hard Magnets, Topological Matter, and Exotic charge-orbital order.

Brief Summary

This DMREF project comprises a joint theoretical, computational, and experimental research effort directed toward a transformative acceleration of progress in our understanding of materials with strong spin-orbit coupling due to 5d ions. The program is built upon a materials discovery paradigm in which first-principles computational methods will be used to scan through a relatively large number of candidate materials, identifying candidates with desirable properties which will then become targets for directed synthesis and in-depth experimental study. The scientific objectives of the project include (i) achieving large magnetocrystalline anisotropy in crystals with mixed 3d and 5d ions; (ii) finding new topological insulators with gaps above 0.3eV, or other novel topological materials; (iii) demonstrating unusual superconducting pairing mechanisms or topological superconductivity; and (iv) developing materials with giant magnetoelectric, multiferroic, or magneto-optic effects.


Spectral function database for correlated materials

NIST/JARVIS Beyond DFT database: The existing materials databases, constructed in the spirit of the Materials Genome Initiative, are built almost exclusively by DFT engines, and thus frequently make incorrect predictions. Various beyond-DFT methods, such as hybrid functionals, meta-GGAs, GW, and DFT+DMFT, have been developed to describe the electronic structure of materials, but it is unclear which method is most accurate for a given correlated solid, and which is most accurate for most materials. It is thus of pressing interest to invest in building databases to test and compare the accuracy of post-DFT methods as applied to different categories of materials. Stimulated by a DMR-2D Data Framework grant and supplement to this DMREF, we undertook the construction of the first-principles and ARPES spectral function database. In this project, a set of state-of-the-art beyond-DFT methods are systematically and uniformly tested on several classes of materials, and the results are used to build an openly searchable database that provides valuable guidance to members of the research community seeking to understand what level of theory is needed for a given problem. The database is now hosted at NIST and is part of NIST/JARVIS database. It contains comparisons of the quality of beyond-DFT methods, such as hybrid functionals, GW, and DFT+DMFT on a growing number of materials. These include transition-metal monoxides, elemental metals, iron pnictides, and chalchogenides, and perovkites.
We also maintain Rutgers based database of abinitio eDMFT calculations. 

Results on CoO are shown as an example. The red dots in the lower panel correspond to an ARPES measurement, and the color coded spectral functions emanate from an eDMFT calculation. The blue dots in the right panel show photoemission and inverse photoemis-sion results comp-a8red with various theoreti-callypredicteddensityofstates. The eDMFT predictions are clearly superior.

Education and outreach:

Education and outreach efforts currently involve close collaboration between the Tennessee and Rutgers partners, conference organization, magneto-optical spectroscopy at the National High Magnetic Field Laboratory, service to several different national laboratories, and mentoring for a diverse scientific workforce. Musfeldt is very active in diversity efforts and has a number of women and a native American on her team. The Rutgers participants have been active in mentoring young science students through the NSF Research Experience of Undergraduates (REU) and the Partners in Science Program of the Liberty Science Center. Now in its 29th year, Liberty Science Center’s Partners in Science program provides an intensive, eight-week summer experience for high school juniors and seniors. The program pairs students with mentors in science, health and technical fields and challenges them to participate in ongoing research and independent projects.

Allison Hosler and Joy Sodon are high school students recruited through the Liberty Science Center summer research program, using low-temperature scanning tunneling microscopy to study layered TaTe2. Grace Cai is an REU stu- dent, working on piezoelectric force microscopy studies of hexagonal manganites. All three are in Wu’s lab at Rutgers. Cheong group regularly hosts Liberty Science Center students as well.

Corrine Rybarski, a high- school recruited through the Partners in Science Program organized by Liberty Science Center, working in Cheong’s lab in summer 2015. She studies high-temperature transport properties of 5d transi- tion metal di-chalcogenides under the guidance of Solomon Admasu, a Ph. D. student.


Publication list

  1. S. Fan, S. N. Neal, C. J. Won, J. W. Kim, S. Deepak, J. J. Yang, D. G. Mandrus, S.-W. Cheong, J. T. Haraldsen, and J. L. Musfeldt. "Excitations of intercalated metal monolayers in transition metal dichalcogenides." Nano Letters (2020).

  2. K. Choudhary, K. F. Garrity, A. C. E. Reid, B. DeCost, A. J. Biacchi, A. R. H. Walker, Z. Trautt, J. Hattrick-Simpers, A. G. Kusne, A. Centrone, A. Davydov, J. Jiang, R. Pachter, G. Cheon, E. Reed, A. Agrawal, X. Qian, V. Sharma, H. Zhuang, S. V. Kalinin, B. G. Sumpter, G. Pilania, P. Acar, S. Mandal, K. Haule, D. Vanderbilt, K. Rabe, and F. Tavazza. "The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design." npj Computational Materials 6 (2020).

  3. N. C. Harms, H.-S. Kim, A. J. Clune, K. A. Smith, K. R. O'Neal, A. V. Haglund, D. G. Mandrus, Z. Liu, K. Haule, D. Vanderbilt, and J. L. Musfeldt. "Piezochromism in the magnetic chalcogenide MnPS3." npj Quantum Materials 5 (2020).

  4. H.-S. Kim, K. Haule, and D. Vanderbilt. "Molecular Mott state in the deficient spinel GaV4S8." Phys. Rev. B 102, 081105 (2020).

  5. S. N. Neal, H.-S. Kim, K. R. O'Neal, A. V. Haglund, K. A. Smith, D. G. Mandrus, H. A. Bechtel, G. L. Carr, K. Haule, D. Vanderbilt, and J. L. Musfeldt. "Symmetry crossover in layered MPS3 complexes (M = Mn, Fe, Ni) via near-field infrared spectroscopy." Phys. Rev. B 102, 085408 (2020).

  6. R. L. Dally, W. D. Ratcliff, L. Zhang, H.-S. Kim, M. Bleuel, J. W. Kim, K. Haule, D. Vanderbilt, S.-W. Cheong, and J. W. Lynn. "Magnetic phase transitions and spin density distribution in the molecular multiferroic GaV4S8 system." Phys. Rev. B 102, 014410 (2020).

  7. M. O. Yokosuk, H.-S. Kim, K. D. Hughey, J. Kim, A. V. Stier, K. R. O'Neal, J. Yang, S. A. Crooker, K. Haule, S.-W. Cheong, D. Vanderbilt, and J. L. Musfeldt. "Nonreciprocal directional dichroism of a chiral magnet in the visible range." npj Quantum Materials 5 (2020).

  8. S. Choi, H.-S. Kim, H.-H. Kim, A. Krajewska, G. Kim, M. Minola, T. Takayama, K. Haule, D. Vanderbilt, H. Takagi, and B. Keimer. "Lattice dynamics and structural transition of hyperhoneycomb iridate β-Li2IrO3 demonstrated by high-pressure Raman scattering." Phys. Rev. B 101, 054102 (2020).

  9. S. Mandal, K. Haule, K. M. Rabe, and D. Vanderbilt. "Systematic beyond-DFT study of binary transition metal oxides." npj Computational Materials 5 (2019).

  10. S. Mandal, K. Haule, K. M. Rabe, and D. Vanderbilt. "Influence of magnetic ordering on the spectral properties of binary transition metal oxides." Phys. Rev. B 100, 245109 (2019).

  11. H.-S. Kim, K. Haule, and D. Vanderbilt. "Mott metal-insulator transitions in pressurized layered trichalcogenides." Phys. Rev. Lett. 123, 236401 (2019).

  12. X. Liu, M. Kotiuga, H.-S. Kim, A. T. N’Diaye, Y. Choi, Q. Zhang, Y. Cao, M. Kareev, F. Wen, B. Pal, J. W. Freeland, L. Gu, D. Haskel, P. Shafer, E. Arenholz, K. Haule, D. Vanderbilt, K. M. Rabe, and J. Chakhalian. "Interfacial charge-transfer Mott state in iridate–nickelate superlattices." Proceedings of the National Academy of Sciences 116, 19863 (2019).

  13. F.-T. Huang, S. J. Lim, S. Singh, J. Kim, L. Zhang, J.-W. Kim, M.-W. Chu, K. M. Rabe, D. Vanderbilt, and S.-W. Cheong. "Polar and phase domain walls with conducting interfacial states in a weyl semimetal MoTe2." Nature Communications 10 (2019).

  14. S. N. Neal, H.-S. Kim, K. A. Smith, A. V. Haglund, D. G. Mandrus, H. A. Bechtel, G. L. Carr, K. Haule, D. Vanderbilt, and J. L. Musfeldt. "Near-field infrared spectroscopy of monolayer MnPS3." Phys. Rev. B 100, 075428 (2019).

  15. K. O'Neal, A. Paul, A. al Wahish, K. Hughey, A. Blockman, X. Luo, S.-W. Cheong, V. Zapf, C. Topping, J. Singleton, M. Ozerov, T. Birol, and J. Musfeldt. "Spin-lattice and electron-phonon coupling in a 3d/5d hybrid Sr3NiIrO6." npj Quantum Materials 4, 48 (2019).

  16. D.-H. Kim, K. Kim, K.-T. Ko, J. Seo, J. S. Kim, T.-H. Jang, Y. Kim, J.-Y. Kim, S.-W. Cheong, and J.-H. Park. "Giant magnetic anisotropy induced by ligand LS coupling in layered Cr compounds." Phys. Rev. Lett. 122, 207201 (2019).

  17. X. Ding, B. Gao, E. Krenkel, C. Dawson, J. C. Eckert, S.-W. Cheong, and V. Zapf. "Magnetic properties of double perovskite Ln2CoIrO6 (Ln = Eu, Tb, Ho): Hetero-tri-spin 3d-5d-4f systems." Phys. Rev. B 99, 014438 (2019).

  18. H.-H. Kung, A. P. Goyal, D. L. Maslov, X. Wang, A. Lee, A. F. Kemper, S.-W. Cheong, and G. Blumberg. "Observation of chiral surface excitons in a topological insulator Bi2Se3." Proceedings of the National Academy of Sciences 116, 4006 (2019).

  19. C. Chen, H.-S. Kim, A. S. Admasu, S.-W. Cheong, K. Haule, D. Vanderbilt, and W. Wu. "Trimer bonding states on the surface of transition-metal dichalcogenide TaTe2." Phys. Rev. B 98, 195423 (2018).

  20. M. Ye, H.-S. Kim, J.-W. Kim, C.-J. Won, K. Haule, D. Vanderbilt, S.-W. Cheong, and G. Blumberg. "Covalency-driven collapse of strong spin-orbit coupling in face-sharing iridium octahedra." Phys. Rev. B 98, 201105 (2018).

  21. K. R. O'Neal, A. J. Clune, N. C. Harms, S.-W. Cheong, J. Yang, Z. Liu, T. Birol, and J. L. Musfeldt. "High-pressure spectroscopic investigation of multiferroic Ni3TeO6." Phys. Rev. B (Editor’s Suggestion) 98, 184101 (2018).

  22. T. Birol, K. Haule, and D. Vanderbilt. "Nature of the magnetic interactions in Sr3NiIrO6." Phys. Rev. B 98, 134432 (2018).

  23. C. Gong, Y. Xie, Y. Chen, H.-S. Kim, and D. Vanderbilt. "Symmorphic intersecting nodal rings in semiconducting layers." Phys. Rev. Lett. 120, 106403 (2018).

  24. W. Zhang, M. X. Chen, J. Dai, X. Wang, Z. Zhong, S.-W. Cheong, and W. Wu. "Topological phase transition with nanoscale inhomogeneity in (Bi1−xInx)2Se3." Nano Letters 18, 2677 (2018).

  25. S. Fan, I. Manuel, A. al Wahish, K. R. O'Neal, K. A. Smith, C. J. Won, J. W. Kim, S.-W. Cheong, J. T. Haraldsen, and J. L. Musfeldt. "Electronic chirality in the metallic ferromagnet Fe1/3TaS2." Phys. Rev. B 96, 205119 (2017).

  26. H.-H. Kung, S. Maiti, X. Wang, S.-W. Cheong, D. L. Maslov, and G. Blumberg. "Chiral spin mode on the surface of a topological insulator." Phys. Rev. Lett. 119, 136802 (2017).

  27. K. R. O'Neal, A. al Wahish, Z. Li, P. Chen, J. W. Kim, S.-W. Cheong, G. Dhalenne, A. Revcolevschi, X.-T. Chen, and J. L. Musfeldt. "Vibronic coupling and band gap trends in CuGeO3 nanorods." Phys. Rev. B 96, 075437 (2017).

  28. Y. J. Yu, Y. Xu, L. P. He, M. Kratochvilova, Y. Y. Huang, J. M. Ni, L. Wang, S.-W. Cheong, J.-G. Park, and S. Y. Li. "Heat transport study of the spin liquid candidate 1T−TaS2." Phys. Rev. B 96, 081111 (2017).

  29. H.-H. Kung, M. Salehi, I. Boulares, A. F. Kemper, N. Koirala, M. Brahlek, P. Loˇsta ́k, C. Uher, R. Merlin, X. Wang, S.-W. Cheong, S. Oh, and G. Blumberg. "Surface vibrational modes of the topological insulator Bi2Se3 observed by Raman spectroscopy." Phys. Rev. B 95, 245406 (2017).

  30. H. Zhang, K. Haule, and D. Vanderbilt. "Metal-insulator transition and topological properties of pyrochlore iridates." Phys. Rev. Lett. 118, 026404 (2017).

  31. J. Dai, D. West, X. Wang, Y. Wang, D. Kwok, S.-W. Cheong, S. B. Zhang, and W. Wu. "Toward the intrinsic limit of the topological insulator Bi2Se3." Phys. Rev. Lett. 117, 106401 (2016).

  32. M. O. Yokosuk, A. al Wahish, S. Artyukhin, K. R. O'Neal, D. Mazumdar, P. Chen, J. Yang, Y. S. Oh, S. A. McGill, K. Haule, S.-W. Cheong, D. Vanderbilt, and J. L. Musfeldt. "Magnetoelectric coupling through the spin flop transition in Ni3TeO6." Phys. Rev. Lett. 117, 147402 (2016).

  33. T. Danz, Q. Liu, X. D. Zhu, L. H. Wang, S. W. Cheong, I. Radu, C. Ropers, and R. I. Tobey. "Structural and magnetic characterization of large area, free-standing thin films of magnetic ion intercalated dichalcogenides Mn0.25TaS2 and Fe0.25TaS2." Journal of Physics: Condensed Matter 28, 356002 (2016).

  34. T. Mauerer, M. Vogt, P.-J. Hsu, G. L. Pascut, K. Haule, V. Kiryukhin, J. Yang, S.-W. Cheong, W. Wu, and M. Bode. "Visualizing anisotropic propagation of stripe domain walls in staircase-like transitions of IrTe2." Phys. Rev. B 94, 014106 (2016).

  35. J. G. Cherian, T. Birol, N. C. Harms, B. Gao, S.-W. Cheong, D. Vanderbilt, and J. L. Musfeldt. "Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7." Appl. Phys. Lett. 108, 262901 (2016).

  36. M. Brahlek, N. Koirala, J. Liu, T. I. Yusufaly, M. Salehi, M.-G. Han, Y. Zhu, D. Vanderbilt, and S. Oh. "Tunable inverse topological heterostructure utilizing (Bi1−xInx)2Se3 and multi-channel weak-antilocalization effect." Phys. Rev. B 93, 125416 (2016).

  37. M. O. Yokosuk, S. Artyukhin, A. al Wahish, X. Wang, J. Wang, Z. Li, S.-W. Cheong, and D. Vanderbilt. "Tracking the continuous spin-flop transition in Ni3TeO6 by infrared spectroscopy." Phys. Rev. B 92, 144305 (2015).

  38. J. W. Kim, S. Artyukhin, E. Mun, M. Jaime, N. Harrison, A. Hansen, J. Yang, Y. Oh, D. Vanderbilt, V. Zapf, and S.-W. Cheong. "Successive magnetic field-induced transitions and colossal magnetoelectric effect in Ni3TeO6 ." Phys. Rev. Lett. 115, 137201 (2015).

  39. T. Birol and K. Haule. "Jeff = 1/2 Mott-insulating state in Rh and Ir fluorides." Phys. Rev. Lett. 114, 096403 (2015).

  40. K.-T. Ko, H.-H. Lee, D.-H. Kim, J.-J. Yang, S.-W. Cheong, M. Eom, J. Kim, R. Gammag, K.-S. Kim, H.-S. Kim, T.-H. Kim, H.-W. Yeom, T.-Y. Koo, H.-D. Kim, and J.-H. Park. "Charge-ordering cascade with spin-orbit Mott dimer states in metallic iridium ditelluride." Nature Communications 6 (2015).

  41. S. F. Blake, M. D. Watson, A. McCollam, S. Kasahara, R. D. Johnson, A. Narayanan, G. L. Pascut, K. Haule, V. Kiryukhin, T. Yamashita, D. Watanabe, T. Shibauchi, Y. Matsuda, and A. I. Coldea. "Fermi surface in the valence-bond state of IrTe2." Physical Review B 91, 121105 (2015).

  42. K. Kim, S. Kim, K.-T. Ko, H. Lee, J.-H. Park, J. J. Yang, S.-W. Cheong, and B. I. Min. "Origin of first-order-type electronic and structural transitions in IrTe2." Phys. Rev. Lett. 114, 136401 (2015).

  43. D. Mazumdar, K. Haule, J. Yang, G. Pascut, B. Hollinsworth, K. O'Neal, V. Kiryukhin, S.-W. Cheong, and J. Musfeldt. "Optical evidence for bonding-antibonding splitting in IrTe2." Phys. Rev. B 91 (2015).

  44. Y. Horibe, J. Yang, Y.-H. Cho, X. Luo, S. B. Kim, Y. S. Oh, F.-T. Huang, T. Asada, M. Tanimura, D. Jeong, and S.-W. Cheong. "Color theorems, chiral domain topology, and magnetic properties of FexTaS2." Journal of the American Chemical Society 136, 8368 (2014).

  45. M.J.Eom,K.Kim,Y.J.Jo,J.J.Yang,E.S.Choi,B.I. Min, J.-H. Park, S.-W. Cheong, and J. S. Kim. "Dimerization-induced Fermi-surface reconstruction in IrTe2." Phys. Rev. Lett. 113, 266406 (2014).

  46. H. S. Kim, T.-H. Kim, J. Yang, S.-W. Cheong, and H. W. Yeom. "Structural versus electronic distortions in IrTe2 with broken symmetry." Phys. Rev. B 90, 201103 (2014).

  47. A. Glamazda, K. Y. Choi, P. Lemmens, J. J. Yang, and S. W. Cheong. "Proximity to a commensurate charge modulation in IrTe2−xSex (x=0 and 0.45) revealed by Raman spectroscopy." New Journal of Physics 16, 093061 (2014).

  48. K. R. O'Neal, J. M. Patete, P. Chen, B. S. Holinsworth, J. M. Smith, N. Lee, S.-W. Cheong, S. S. Wong, C. Marques, M. C. Aronson, and J. L. Musfeldt. "Size-dependent vibronic coupling in α-Fe2O3." Journal of Chemical Physics 141, 044710 (2014).

  49. J. Dai, K. Haule, J. Yang, Y. Oh, S.-W. Cheong, and W. Wu. "Hierarchical stripe phases in IrTe2 driven by competition between Ir dimerization and Te bonding." Phys. Rev. B 90, 235121 (2014).

  50. H. Zhang, H. Huang, K. Haule, and D. Vanderbilt. "Quantum anomalous Hall phase in (001) double-perovskite monolayers via intersite spin-orbit coupling." Phys. Rev. B 90, 165143 (2014).

  51. G. L. Pascut, T. Birol, M. J. Gutmann, J. J. Yang, S.-W. Cheong, K. Haule, and V. Kiryukhin. "Series of alternating states with unpolarized and spin-polarized bands in dimerized IrTe2." Phys. Rev. B 90, 195122 (2014).

  52. L. Pascut, G. K. Haule, J. Gutmann, M. A. Barnett, S. A. Bombardi, S. Artyukhin, T. Birol, D. Vanderbilt, J. Yang, J. S.-W. Cheong, and V. Kiryukhin. "Dimerization-induced cross-layer quasi-two-dimensionality in metallic IrTe2." Phys. Rev. Lett. 112, 086402 (2014).

  53. Y. S. Oh, S. Artyukhin, J. J. Yang, V. Zapf, J. W. Kim, D. Vanderbilt, and S.-W. Cheong. "Non-hysteretic colossal magnetoelectricity in a collinear antiferromagnet." Nature Comm. 5, 3201 (2014).

  54. P.-J. Hsu, T. Mauerer, M. Vogt, J. J. Yang, Y. S. Oh, S.-W. Cheong, M. Bode, and W. Wu. "Hysteretic melting transition of a soliton lattice in a commensurate charge modulation." Phys. Rev. Lett. 111, 266401 (2013).

  55. H. Zhang, K. Haule, and D. Vanderbilt. "Effective J=1/2 insulating state in Ruddlesden-Popper iridates: An LDA+DMFT study." Phys. Rev. Lett. 111, 246402 (2013).

  56. Y. S. Oh, J. J. Yang, Y. Horibe, and S.-W. Cheong. "Anionic depolymerization transition in IrTe2." Phys. Rev. Lett. 110, 127209 (2013).


This material is based upon work supported by the National Science Foundation under Grant Number (NSF DMREF 1233349 & 1233118 as well as NSF DMREF 1629059 & 1629079 )
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.